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A B S T R A C T   

The introduction of winter canola (Brassica napus L.) into rotations with winter wheat (Triticum aestivum L.) in the 
United States (US) revealed economic and agronomic benefits as well as improved weed and pest control. Canola 
stand establishment during the fall and plant survival over the winter are critical to the success of this crop. The 
environment plays a key role influencing survival, but in-depth evaluation of meteorological factors has not been 
conducted. This research study aimed to: i) identify meteorological factors underpinning winter canola survival, 
ii) build probabilistic response models based on historical meteorological data for different severities of winter 
kill across the US, and iii) define areas of adaptation of current germplasm. A winter survival dataset was 
compiled from the National Winter Canola Variety Trials from 2003 until 2018 (190 site-years) and auxiliary 
meteorological data over the last 40 years. A regression tree analysis indicated that meteorological variables 
related to minimum temperature, fluctuating temperatures above and below 0◦C, and windchill during the cold 
period were the main factors accounting for winter kill. Cold periods across all site-years were classified into 
three clusters: cold periods with high (96%), medium (70%), and low (28%) average plant winter survival. For 
94 US sites, the probabilities of these conditions were calculated and summarized in a map that defined areas of 
adaptation: a large area south of 35◦ N latitude for the US was identified with greater potential for overwintering 
success. Based on the response under multiple meteorological conditions, four distinct genotype survival groups 
were identified (tolerant, semi-tolerant, semi-susceptible, and susceptible). Groups with a greater number of 
genotypes differ in the impact of meteorological conditions on survival for the medium cluster. In regions with 
more favorable conditions for overwintering success, farmers may be open to introducing this crop to diversify 
their farming system.   

Introduction 

The United States produced 3.6 million tons of canola (Brassica napus 
L.) in 2019, representing 5.2% of global production (USDA-NASS, 2019; 
FAO, 2020). Although the state of North Dakota harvested 83% of US 
canola as spring canola (USDA-NASS, 2019), other southern US states 
have the potential to introduce winter canola, also known as winter 
oilseed rape or double-low rapeseed, where winter wheat (Triticum 
aestivum L.) is the only option as a winter crop or as a service crop to 
diversify the current maize (Zea mays L.)-soybean (Glycine max [L.] 
Merr) farming system. Since the 1970s, a loss of genetic diversity of 
crops has been reported as a result of the Green Revolution (Jacques and 

Jacques, 2012). Inclusion of winter canola into farming systems with 
winter wheat, as opposed to mono-cropping, has proven to break weed 
and pest cycles (Bushong et al., 2012). Increasing crop diversity in 
current agricultural systems can be the only path to meeting sustain-
ability goals (Renard and Tilman, 2019). 

Fall stand establishment and winter survival have been suggested as 
key limiting factors to the success of winter canola production (Assefa 
et al., 2014). Broadleaf winter survival is a complex trait, and several 
stresses influence this process such as prolonged exposure to subzero 
temperatures, ice encasement, diseases, wind desiccation, and soil 
heaving (Levitt, 1956). Plant tolerance to environmental stresses de-
creases as resources necessary for plant survival become depleted 
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throughout the winter (Gusta et al., 1982). Temperature and precipita-
tion during the winter period are critical for effective winter survival 
(Fowler et al., 1981; Waalen et al., 2013). More in-depth studies for this 
trait in winter canola were carried out in Europe. Salmon (1918) iden-
tified temperature and soil moisture as critical factors for winter kill of 
grain crops. Rainfall and temperature during the winter season, which 
can vary dramatically among years and sites, are key environmental 
variables in current farming systems (Assefa et al., 2014). Although 
there is no clear understanding of genotype by environment interaction 
effects for winter survival in the US, producers have concerns regarding 
low plant establishment and winter survival (George et al., 2012; 
Stamm and Watson, 2013). 

A significant breeding effort has increased the winter hardiness of 
canola genotypes (Rife et al., 2001; Stamm et al., 2015). Because of the 
complexity of the trait, a comprehensive understanding of how meteo-
rological factors impact winter survival and yield should be pursued to 
facilitate winter canola production in new areas. This understanding will 
facilitate breeding to expand the area of adaptation and production and 
could be integrated with whole-genome prediction methodology (Mes-
sina et al., 2018). While a few site-specific winter survival analyses were 
conducted (Holman et al., 2011; Waalen et al., 2013), a comprehensive 
synthesis of meteorological variation in the US and its influence on this 
critical plant trait is lacking. Building foundational knowledge of crops 
such as canola and other grain, oil, or service crops will be required to 
transform current (undiversified) farming systems. 

The overall objective of this work is to determine the area of adap-
tation of current winter canola germplasm based on winter survival. 

This knowledge will facilitate crop diversification, breeding efforts, and 
genetic evaluation that may feed the expansion of the area of adaptation. 
The specific aims of this research study were to: i) model winter canola 
survival based on meteorological factors, ii) build probabilistic response 
models based on historical meteorological data for different severities of 
winter kill, and iii) define areas of adaptation of current germplasm 
across the US. A large dataset compiled from the National Winter Canola 
Variety Trials (NWCVT), conducted from 2003 to 2018 across 94 unique 
sites with auxiliary weather data for each site-year were assembled and 
analyzed. 

Materials and Methods 

Data and Predictors 

Field trials 
The field dataset was curated from the National Winter Canola Va-

riety Trial (NWCVT) (Stamm et al., 2019). The purpose of this national 
network of trials is to evaluate canola winter survival, yield perfor-
mance, and other important agronomic traits on multiple varieties 
across various US states. The trials also aim to find suitable areas of 
adaptation of new genotypes and increase the visibility of winter canola 
across the country. The field dataset comprises 94 sites covering 23 US 
states, spanning 2003 through 2018, for a total of 333 site-years. Only 
site-years with information on winter survival were included, decreasing 
the number of sites and site-years to 54 and 190, respectively. The 
experimental design for each trial defined by site and year was a 

Table 1 
Description of secondary daily weather variables.  

Variable name Unit Abbreviation Definition 

Mean temperature ◦C Tmean (Tmax + Tmin)/2, 
Delta temperature ◦C DeltaT Tmax - Tmin 
Growing degree days ◦C.d. GDD (Tmax + Tmin)/2; if Tmax > 30◦C, then Tmax=30; if Tmin < 0◦C, then Tmin=0. 

Tmax and Tmin are the maximum and minimum air temperature, in◦C, respectively. 

Fig. 1. Example of the cold period. Mean daily temperature (◦C) since planting to harvest at Manhattan, KS (2010-2011 season). Blue points represent the cold 
period. Vertical blue bars represent the beginning and end of cold period as the first and last time that mean daily temperature was below 0◦C, respectively. 
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randomized complete block with three or four replications. The number 
of genotypes included in any given site and the number of replications 
varied depending on the site and year. Genotypes included in each site 
and year changed based on maturity and year of commercialization. 
Winter survival ratings were measured after dormancy was completed, 
or approximately when the average daily temperature exceeded 4◦C. 
This coincides with the time period of rapid, new leaf development, just 
before the plant enters the reproductive phase at bolting, and when the 
threat of further losses is low. Winter survival is a visual estimate of the 
percentage of plants alive in spring relative to those present before the 
winter period (Stamm et al., 2012). Based on field conditions up to the 
point of rating winter survival, the plants that do not initiate new leaf 
growth are observed as lost to winter kill. 

Weather dataset 
Daily weather data were extracted from Google Climate Engine 

(Huntington et al., 2017) for the period 1979-2019 (40 years) for each 
site. The variable set included daily minimum and maximum tempera-
tures (◦C), precipitation (mm), wind velocity (m s− 1), solar radiation (W 
m− 2), vapor pressure deficit (kPa), and evapotranspiration (mm) 
calculated using alfalfa (Medicago sativa L.) as reference. The daily 
weather data was utilized to: i) create secondary weather variables to 
characterize winter harshness; ii) identify the beginning and end of the 
cold period (CP); iii) build a model to predict meteorological survival 
clusters with meteorological variables during the CP, and iv) predict 
meteorological survival clusters and calculate the probability of occur-
rence over 40 years. For each site-year, secondary daily weather vari-
ables were created by calculating means and difference between 
maximum and minimum for temperature (◦C) and growing degree days 
(◦C.d.) (Table 1). Mean temperature was then utilized to identify the 
beginning and end of the CP as the period when temperatures were 

below 0◦C. An example of the mean daily temperatures preceding, 
during, and after the CP for the Manhattan, KS, 2010-2011 growing 
season is shown in Fig. 1. 

Predictors 

After the CP was determined for each site-year, the meteorological 
data was filtered by date to contain only information within this period. 
Secondary summarized meteorological variables were calculated 
including CP duration days (N), number of times when mean tempera-
ture shifts from negative to positive or vice-versa (ncycle), slope be-
tween cumulative GDD (with minimum base temperature of 0◦C and 
maximum temperature of 30◦C) and days after planting (Slope), and 
class descriptors for mean temperature (Table 2). All daily variables 
were summarized by averaging, summing, extracting minimum and 
maximum values, or counting within the CP (Table 2). Windchill cal-
culations were performed following the equation presented by Osczev-
ski and Bluestein (2005). 

Analyses 

A series of analyses divided into seven steps were conducted to es-
timate the contribution of genotype (G), environment (E), and interac-
tion (GxE) to the overall variance for canola winter survival (S). Because 
S was not normally distributed, we used a log transformation. Once 
variance components were estimated (step 1), a mixed linear model was 
utilized to estimate the E and GxE effects (step 2). Predictions from this 
model, Best Linear Unbiased Estimators (BLUEs) for E effects, and Best 
Linear Unbiased Predictors (BLUPs) for the GxE effects were produced 
by solving for model-based E marginal means and GxE variance com-
ponents, respectively. Environment BLUEs for S were transformed into 

Table 2 
Description of meteorological variables during the CP (mean, cumulative, minimum, maximum, and counts).  

Variable name Unit Abbreviation Definition 

Cold period duration days N Number of days between beginning and end of cold period 
Number of temperature cycles count ncycle Number of times Tmean shifts from negative to positive or vice-versa 
Slope ◦C - Slope between cumulative GDD vs. days after planting 
Tmean descriptors*    
Warmest, Warmest_pct count, %  Number of times Tmean >= 5◦C, Warmest/N 
Warm, Warm_pct count, %  Number of times 0◦C <= Tmean < 5◦C, Warm/N 
Mild, Mild_pct count, %  Number of times -5◦C <= Tmean < 0◦C, Mild/N 
Cold, Cold_pct count, %  Number of times -10◦C <= Tmean < -5◦C, Cold/N 
Colder, Cold_pct count, %  Number of times -15◦C <= Tmean < -10◦C, Colder/N 
Coldest, Coldest_pct count, %  Number of times Tmean < -15◦C, Coldest/N 
DeltaT descriptors*    
Extreme, Extreme_pct count, %  Number of times DeltaT >= 16.7◦C, Extreme/N 
High, High_pct count, %  Number of times 13.4◦C <= DeltaT < 16.7◦C, High/N 
Medium, Medium_pct count, %  Number of times 10◦C <= DeltaT < 13.4◦C, Medium/N 
Low, Low_pct count, %  Number of times DeltaT < 10 ◦, Low/N 
Minimum daily mean temperature ◦C minTmean - 
Mean daily mean temperature ◦C meanTmean - 
Maximum daily mean temperature ◦C maxTmean - 
Minimum daily minimum temperature ◦C minTmin - 
Maximum daily maximum temperature ◦C maxTmax - 
Minimum delta temperature ◦C minDeltaT - 
Mean delta temperature ◦C meanDeltaT - 
Maximum delta temperature ◦C maxDeltaT - 
Mean wind velocity at 10 m m s− 1 meanWind - 
Mean wind chill# ◦C meanWindchill 13.12 + 0.6215 × Tmean -11.37 × W0.16 + 0.3965 × Tmean × W0.16 

Cumulative precipitation mm cPrecip - 
Cumulative reference (alfalfa) evapotranspiration mm cET - 
Cumulative solar radiation W m− 2 cSolar - 
Cumulative vapor pressure deficit kPa cVPD - 
Cumulative canola growing degree days ◦C.d. cGDD SUM (Tmax +Tmin)/2 

Tmean is the average between maximum and minimum daily temperature, in◦C. DeltaT is the difference between maximum and minimum daily temperature, in◦C. 
* Tmean and DeltaT descriptors were calculated both as the number of days during winter within a given conditional statement, and as a percentage of this count in 

relation to total days of winter duration. 
# W is the daily averaged wind velocity at 10 m, in km h− 1 
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survival classes using cluster analyses (step 3). These categorized data 
were used in modeling meteorological survival class as a function of 
meteorological variables (step 4) using conditional inference. Step 5 
used the model developed in step 4 to simulate meteorological survival 
class as a function of meteorological predictors and classify each site- 
year combination for the risk level of S. Step 6 repeats GxE analyses 
using meteorological survival class as predictors rather than site-year as 
factor. BLUEs from step 6 were transformed into 4 genotype survival 
classes. A final mixed model was used to model S as a function of E and G 
survival classes and their interaction (step 7). 

In step 1 we modeled the data using a random-effect model (equa-
tion 1) (n=23,225), 

log(S) = Gi + Ej + GEij + εijk (1)  

where all terms were considered random effects with error N ∼ (0,
σ) and a general symmetric positive-definite variance-covariance matrix 
structure. E here is defined by the site-year identifier. 

Step 2 used a mixed model (equation 2), 

log(S) = Gi + Ej + GEij + εijk (2)  

where E was considered a fixed effect, and G and GxE considered 
random effects. G was considered a random effect as the inference is 
over a sample of genotypes and not any genotype in particular. E here is 
defined by the site-year identifier. 

In step 3, environment BLUEs for survival, on the response scale, 
(n=190) were clustered into three groups: poor, medium, and high; 
using k means algorithm. The optimal number of clusters (i.e., k=3) was 

selected by testing k values from 1 to 10 and choosing the one with the 
most votes from 30 different indices. The categorical meteorological 
survival class (MSc) was integrated with meteorological predictors as 
described above. 

In step 4 we used the dataset containing 39 summarized meteoro-
logical predictors (Table 2), to model meteorological survival class MSc 
(n=190) as a function of meteorological factors using conditional 
inference tree methodology. The modeling process included model 
parameterization and model fitting. During model parameterization, the 
model with the best values for the hyperparameters of maximum depth 
and alpha was found by performing leave-one-out cross-validation. 
Maximum depth controls the number of horizontal node layers of the 
tree, and alpha controls the significance level for a variable to be 
selected to enter the tree. Maximum depth values of 2, 3, 4, and 5 were 
evaluated along with alpha values of 0.01, 0.02, 0.03, 0.04, 0.05, and 
0.1. Hyperparameter values of maximum depth=4 and alpha=0.1 were 
then chosen based on overall classification accuracy. Thereafter, model 
fitting was conducted using all the data and the hyperparameters were 
calculated in model parameterization. Leave-one-out cross-validation 
was conducted to estimate the model performance metrics of overall and 
category-specific accuracy, sensitivity, and specificity. Using the classi-
fication tree was possible to predict meteorological survival class based 
on meteorological covariates (MSce). 

Step 5 utilized long-term daily weather records (1979-2019 period) 
for each of the 94 sites included in the multi-environment trials to es-
timate the area of adaptation of current canola germplasm based on the 
risk of survival. The long-term meteorological data was processed in the 

Table 3 
Summary statistics for meteorological variables during the cold period.  

Variable Unit Minimum Mean Median Maximum CV (%) 

Survival % 0 83.9 96.2 100 31.4 
N days 11 111.4 109 257 31.8 
ncycle count 5 23.3 23 61 39.2 
Slope ◦C 0.2 3 2.6 10.5 64.4 
Warmest count 0 28.9 28 106 57 
Warmest_pct % 0 0.3 0.3 0.7 59.1 
Warm count 2 32.9 30 100 41.7 
Warm_pct % 0.1 0.3 0.3 0.5 27.6 
Mild count 3 31.5 32 75 46.2 
Mild_pct % 0.1 0.3 0.3 0.5 36 
Cold count 0 12.9 11 47 73.7 
Cold_pct % 0 0.1 0.1 0.3 70.7 
Colder count 0 4.1 3 33 125 
Colder_pct % 0 0 0 0.2 172.8 
Coldest count 0 1.2 0 25 266 
Coldest_pct % 0 0 0 0.2 563.8 
Extreme count 0 21.2 12 86 103 
Extreme_pct % 0 0.2 0.1 0.7 101.1 
High count 2 25.5 22 75 62.1 
High_pct % 0 0.2 0.2 0.5 47.8 
Medium count 1 29.8 28 76 46.6 
Medium_pct % 0 0.3 0.3 0.5 36.5 
Low count 0 34.9 27 130 79.7 
Low_pct % 0 0.3 0.3 0.8 66.4 
minTmean ◦C -24.9 -12.6 -12.6 -2.3 -37.7 
meanTmean ◦C -7.2 1.3 1 9.1 220.7 
maxTmean ◦C 4.1 14.5 14.5 21.9 22.5 
minTmin ◦C -31.1 -18.4 -18.2 -6.9 -27.2 
maxTmax ◦C 6.6 22.7 22.5 34.5 17.9 
minDeltaT ◦C 0.5 4.4 4.3 12.4 46.3 
meanDeltaT ◦C 7.1 12.5 12.5 19.1 21.1 
maxDeltaT ◦C 15.1 22.3 21.5 33.9 17.7 
meanWind m s− 1 2.5 4.2 4.3 5.9 13.9 
meanWindchill ◦C -12.9 -2.5 -2.7 7.5 -138.6 
cPrecip mm 1.8 149 107.6 608.7 82.3 
cET mm 29.9 270.6 245.7 701.3 44 
cSolar W m− 2 1423.7 12478.9 11736.4 27764.7 36.5 
cVPD kPa 4.1 40.6 35.8 96 47 
cGDD ◦C.d. 13.1 333.4 307.2 1161.7 53.8 

CV=coefficient of variation. 
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Fig. 2. Conditional inference tree of canola meteorological survival clusters as explained by cold period-summarized meteorological variables from 190 sites-years 
classified into seven terminal nodes. Terminal node bars represent the proportion (left y-axis) of site-years within each meteorological survival cluster (from left to 
right at each node: high, medium, and poor) at that node. 

Fig. 3. US map with the sites included in the National Winter Canola Variety Trial dataset. Each pie chart represents a site with the slices representing the proportion 
of cold periods classified as high, medium, and poor meteorological survival clusters over a period of 40 years (1979-2019). 
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same manner as described under Predictors. Only years with a CP (mean 
temperature below 0o C) were kept, causing the number of years per site 
to vary between 19 and 40. In this simulation step, the trained tree 
model was used to predict the CP of each site-year (MSc) into a risk class 
(Sr), poor, medium, and high, based on the simulation for all years for 
each site. The original data set (n=23,225) was integrated with pre-
dictions for MSc. Only genotypes present at least once in each of poor, 

medium, and high meteorological survival clusters were kept 
(n=19,919). 

In step 6, a mixed-effect model was fitted to the data (equation 3), 

log(S) = Gi + MScj + GMScij + Ek + Ebkl + εijklm (3)  

with G and MSc defined as survival class and their interaction GxMSc 
considered a fixed effect, and block (b) nested within the site-year 
random effect. Pairwise comparisons on BLUEs for genotype by MSc 
interaction were performed across meteorological survival clusters 
using alpha=0.05. Based on the pairwise comparison letter separation 
result, four distinct genotype survival behaviors across meteorological 
survival clusters were identified, hereafter referred to as genotype sur-
vival group GSg. 

Step 7 used a mixed-effect model (equation 4), 

log(S) = GSgi + MScj + GSgMScij + Ek + Ebkl + EGkm + εijklmn (4)  

where GSgi, MScj and their interaction were fixed effects, and block (b)
and genotype nested within the site-year random effect. Pairwise com-
parisons for GSgi x MScj were performed within MScj using alpha=0.05. 

Software 

All analyses were conducted within the R framework (R Core Team, 
2019). Mixed model analyses were solved using the function lmer from 
package lme4 (Bates et al., 2015). Tree models were developed using the 
function ctree (Hothorn et al., 2006) included in the package partykit 
(Hothorn, 2015). Cluster analyses were conducted using the functions 
kmeans included in the R package stats, with Euclidean distance, and the 
final number of clusters was determined with the function NbClust 
included in the package NbClust (Charrad et al., 2014). 

Results 

This study sought to understand the contribution of G, E and GxE on 
the determination of total variation on winter survival of canola. Results 
from the analyses of variance components showed that G, E and GxE 
explained 3%, 71%, and 7% of the variation in winter canola survival, 
respectively. The rest of the variation was pooled into model residuals 
(19%). The effect of GxE is twice as large as G indicating that GxE is an 
important determinant of survival. However, the sum of both terms 
(10%) is just a small proportion of the variation explained by E. Later 

Fig. 4. Boxplots of winter survival of 202 canola genotypes across three 
different meteorological survival clusters (poor, medium, and high) separated 
into four distinct genotype survival groups (tolerant, semi-tolerant, semi-sus-
ceptible, and susceptible). Boxplots portray the 25th (lower hinge), 50th (solid 
black line), and 75th (upper hinge) percentiles, largest value no further than 1.5 
inter-quartile range (lower whisker), smallest value at most 1.5 inter-quartile 
range (upper whisker), and outlying observations (points). Boxplots within a 
panel followed by the same letter are not statistically different at alpha=0.05. 
Total number of genotypes within each panel is shown in parenthesis. 

Fig. 5. Canola winter survival means across four different genotype survival groups (tolerant, semi-tolerant, semi-susceptible, and susceptible) for each meteoro-
logical survival cluster (poor, medium, high). Means within a panel followed by the same letter are not statistically different at alpha=0.05. Bars represent model- 
derived standard error. 
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sections of this paper will focus on modeling the environmental de-
terminants of survival, and to a lesser degree on the model to explain 
GxE. 

Overall, winter survival averaged 84%, but ranged from 0 to 100%, 
indicating a broad range of variation (Table 3). Site-year modeled sur-
vival was grouped into poor, medium, and high survival clusters. The 
minimum, mean, and maximum survival and number of site-years per 
survival cluster were 0, 28, 48, and 27 for the poor; 50, 70, 82, and 36 for 
the medium; and 83, 96, 100, and 127 for the high, respectively. Sum-
mary statistics for meteorological variables during the CP had large 
variability, with coefficients of variation ranging from 14% (meanWind) 
to 564% (Coldest_pct). The wide range in coefficients of variation for all 
meteorological variables was expected due to the geographical extent of 
the dataset, ranging from Texas to northern Minnesota and from eastern 
North Carolina to Washington. 

The conditional inference tree classified site-year CPs into seven 
terminal nodes based on the evaluation of meteorological variables 
(Fig. 2). The most relevant variables classifying the CP of 190 site-years 
into meteorological survival clusters and its specific binary splits of the 
final tree model were in the order of importance from high to low: i) 
Colder (5 days), ii) ncycle (24 cycles), iii) cET (465 mm cumulative ET), 
iv) meanWindchill (-3.6◦C), v) Colder_pct (3%), and vi) maxTmean 
(13.4◦C); (see Table 2 for full description of the predictors). The leave- 
one-out cross-validation procedure resulted in a model fit with overall 
accuracy of 58%. Accuracy for the poor, medium, and high meteoro-
logical survival clusters were 48%, 40%, and 60%, respectively. 
Category-specific sensitivity for the same classes were 10%, 0%, and 
71%, and for specificity were 85%, 79%, and 49%, respectively. Site- 
year CP was classified as poor, medium, and high survival clusters in 
terminal nodes 12 (n=31); 7 and 13 (n=19), and 4, 6, 8, and 10 
(n=140), respectively. 

The classification model was used to classify each CP for all 94 sites 
during the 1979-2019 period, into one of the meteorological survival 
clusters. Thereafter, the proportion of each meteorological survival 
cluster overall years (from 19 to 41 years depending on the site), was 

calculated for each site (Fig. 3). Overall, sites with a greater proportion 
of poor, medium, and high meteorological survival were found at lati-
tudes >39◦ N, between 35◦ N and 39◦ N, and <35◦ N, respectively. 

Canola winter survival was determined by meteorological survival 
cluster alone and as part of the interaction with genotype (p<0.0001). 
Survival means were extracted across meteorological survival cluster as 
this was the most relevant type of comparison. BLUEs for genotype plus 
genotype by Sr interaction led to the identification of four different 
genotype-specific behaviors: tolerant (7 genotypes), semi-tolerant (129 
genotypes), semi-susceptible (56 genotypes), and susceptible (10 geno-
types) (Fig. 4). 

BLUEs for G plus GxE by meteorological cluster show that all four 
genotype survival groups had similar mean survival in the high meteo-
rological survival cluster (from 95% to 98%, Fig. 5). In the medium 
meteorological survival cluster, survival was greatest in tolerant and 
semi-tolerant genotype survival groups (78% and 75%, respectively), 
and lowest in the susceptible group (30%). In the poor meteorological 
survival cluster, only the tolerant genotype survival group had a sig-
nificant greater survival (40%), while the other genotype survival 
groups ranged from 17% to 19% survival. 

A breakdown of the genotype survival groups provides insight into 
the current state of winter canola genotype development and testing in 
the US. The susceptible canola genotypes are a mix of commercial and 
experimental genotypes bred outside the US that were grown in the 
country briefly before more adapted materials could be accessed. The 
semi-susceptible genotype survival group contains many experimental 
and commercial genotypes developed outside the US, but also some of 
the first genotypes developed specifically for US environments. This 
group contains the first genotypes to be grown on a widespread basis 
and the very first hybrid to be introduced to the market. The semi- 
tolerant genotype survival group contains many experimental and 
commercial genotypes, but the majority are from past and current US 
breeding programs. This includes a large number of experimental and 
new commercial genotypes from the Kansas State University breeding 
program, which has the goal of improving winter hardiness since its 

Fig. 6. US map with the sites included in the National Winter Canola Variety Trial, displaying the distribution of each genotype survival group.  
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conception in the mid-1990s. Newer hybrids from Europe with 
enhanced levels of winter hardiness and those containing the semi- 
dwarfing trait, a trait of significant benefit to winter survival in 
harsher European environments, are also a large proportion of this 
group. Other group members include widely grown US open-pollinated 
genotypes and popular European commercial hybrids. The tolerant 
survival group contains a few foundational breeding lines from the 
Kansas State University breeding program and the most winter hardy, 
commercially available genotypes on the market today. More specific 
information on the genotypes such as name, type and decade of release is 
provided in appendix A. The most evenly distributed groups over all the 
evaluated states were the semi-tolerant and semi-susceptible genotyped 
groups (Fig. 6). 

Discussion 

Understanding the impact of meteorological factors on survival of 
winter canola will help to define breeding and agronomic objectives to 
close yield gaps. At the same time, mapping meteorological risk for 
winter survival will not only facilitate the introduction of winter canola 
within current cropping systems but improve overall diversity and sus-
tainability. Although managing a new crop can be a difficult task, winter 
canola offers an alternative for sites where winter crops are limited to 
one species. However, some site-specific factors can limit its production 
including: available agronomic and varietal information, producers 
willing to grow a new crop, delivery points within a reasonable trans-
portation distance, obtaining a good stand at planting, heat stress at 
flowering, and challenges at harvest caused by shattering of pods 
(Stamm and Watson, 2013). Identifying winter canola genotypes that 
will overwinter and the optimum planting date for a given region are 
two critical steps that must be resolved before the crop can be intro-
duced into new areas (Holman et al., 2011). The two larger winter 
survival groups indicate the broad adaptation of semi-susceptible and 
semi-tolerant genotypes among geographical regions in the US. This 
indicates the potential for the development of more tolerant genotypes 
for new areas. Even though this study was one of the first to provide a 
comprehensive analysis of winter canola survival, a few factors limited 
our quantitative evaluation: i) lack of quantification of plants before and 
after winter, which increased the subjectivity of the evaluation; and ii) 
quality of weather data. Even though gridded data seemed to be robust 
for temperature (Mourtzinis et al., 2017), other weather variables may 
have been less accurately estimated. 

The outcomes presented here on winter canola survival provide 
foundational knowledge for canola breeding processes to select geno-
types better adapted to cold environments. These results may give 
breeders more ways to quantify the “type” of winter kill they observe. 
Waalen et al. (2013) provided one of the first in-depth characterizations 
of meteorological factors affecting winter canola survival in Norway, 
emphasizing not only the effect of the stress but also the importance of 
timing. Temperature fluctuations in the US Great Plains during the 
winter seem to trigger phases of dormancy and re-growth, creating 
significant stress on the plant (Rife, 2003). Cold acclimation (exposure 
to low temperature for temperate plants to achieve maximum freezing 
tolerance), de-acclimation (fully cold-acclimated plants are exposed to 
warm temperatures), and re-acclimation (re-exposure to cold accli-
mating temperatures) are complex processes studied in-depth in Canada 
(Trischuk et al., 2014). The “perfect” sequence of events to reduce 
winter kill might be to enter into growth cessation with adequate cold 
acclimation processes, followed by a winter period without extreme 
events of freezing temperatures, and finishing with a slow and gradual 
growth elongation and de-acclimation period. This agrees with Rapacz 
(1998), who showed that oilseed rape almost doubled its frost resistance 
through growth cessation during cold acclimation. In addition, Rapacz 
(2002) demonstrated in central Europe (Poland), that further 
re-acclimation is limited if bolting has begun during de-acclimation. 

Based on our findings, winter survival was negatively affected by 
more than 24 cycles of mean daily temperature shifting from negative to 
positive or vice-versa, followed by cold temperatures with wind chill 
temperatures below -3.6◦C. According to Levitt (1972), elongation 
growth may interfere with cold acclimation as a result of competition for 
photoassimilates between growth and acclimation, thus, the plant may 
be more susceptible to frost due to greater water content in the seedling. 
Rife and Zenali (2003) reported that de-acclimated seedlings could be 
re-acclimated, with the accumulation of dehydrins in canola linked to 
the development of frost tolerance (Schilling, 2004). Likewise, carbo-
hydrate concentration increased during cold acclimation in winter 
canola (Trischuk et al., 2014) correlating to the photosynthetic capacity 
of the plants (Hurry et al., 1995). 

In summary, plant, meteorology, and management factors such as 
days without snow cover, root collar diameter, the height of the crown 
(rosette) at the beginning of the winter, ice encasement, topography, 
conditions at planting, stand establishment (Trischuk et al., 2014; 
Waalen et al., 2013), plant density, crop residue on the soil, leaf 
development (Lääniste et al., 2007), dehydration during sunny and/or 
windy days while the soil is frozen (Sovero, 1993), prolonged exposure 
to subzero temperatures, diseases, and soil heaving (Levitt, 1956) may 
be involved and interact to influence this important plant trait. This 
evidence, mostly from northern regions such as Europe and Canada, 
along with our results, suggests that winter survival is a complex trait. 

Future research should focus on improving winter survival mea-
surements, integrating new technologies to improve rapid phenotyping 
with the goal of increasing standardization and precision, and reducing 
the subjectivity, labor, and time to collect data for this relevant trait of 
canola. Lastly, investing resources to understand the physiological 
processes underpinning this trait and its interaction with other factors 
such as meteorology, management, and genotype will be relevant for 
increasing productivity and stability of yield over time. 

Conclusions 

Our analysis of National Winter Canola Variety Trial data indicated 
that during the winter period, the most relevant meteorological vari-
ables affecting winter survival were related to minimum temperature 
and its fluctuations. There are three important outcomes of this study. 
First, we found that the number of days with temperatures between 
-10◦C and -15◦C, the number of cycles when the temperature fluctuates 
above or below 0◦C, and wind chill temperature during the cold period 
were the main meteorological variables that explained mean winter 
survival across 190 site-years. Second, we documented the potential to 
have near 100% winter survival below 35◦ N latitude in places where 
vernalization requirements could be satisfied, as well as in Minnesota, 
Washington, western Colorado, and near the Pacific coast. Third, we 
found that most broadly-adapted genotypes were classified as semi- 
tolerant (129) and semi-susceptible (56) to winter kill in the US, indi-
cating there is potential to develop more tolerant genotypes for new 
areas and widespread use of semi-tolerant genotypes exists. Caution 
should be taken in specific states between 35◦ N and 40◦ N latitude 
where continental conditions are highly diverse and winter survival can 
be problematic. 
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Appendix A. Genotype groups information  

Genotype group Name Decade of release Type 

Tolerant Celsius 2000s Open-pollinated  
Explus 2010s Hybrid  
KS2098 2000s Open-pollinated  
KS2169 2000s Open-pollinated  
KS9012 2000s Open-pollinated  
Torrington 2010s Open-pollinated  
USI2002 2000s Open-pollinated     

Semi-tolerant 15.WC.05633 2010s Open-pollinated  
15.WD.1 2010s Open-pollinated  
45D03 2000s Hybrid  
46W14 2000s Hybrid  
46W99 2010s Hybrid  
AAMU-33-07 2010s Open-pollinated  
Alabaster 2010s Hybrid  
ARC00004-2 2000s Open-pollinated  
ARC00005-2 2000s Open-pollinated  
ARC00024-2 2000s Open-pollinated  
ARC2189-1 1990s Open-pollinated  
ARC2189-2 1990s Open-pollinated  
ARC91019-50-e2 2000s Open-pollinated  
ARC97019 2000s Open-pollinated  
ARC98007 2000s Open-pollinated  
Argos 2010s Hybrid  
Artoga 2010s Hybrid  
Atora 2010s Hybrid  
Banjo 2000s Hybrid  
Casino 1990s Open-pollinated  
CHH2311 2010s Hybrid  
CWH042 2010s Hybrid  
CWH081 2000s Hybrid  
CWH095 2000s Hybrid  
CWH111 2000s Hybrid  
CWH116 2000s Hybrid  
CWH633 2000s Open-pollinated  
DK Exstorm 2010s Hybrid  
DK Imiron CL 2010s Hybrid  
DK Imistar CL 2010s Hybrid  
DK Imiron CL 2010s Hybrid  
DK Sensei 2010s Hybrid  
DKW13-69 2000s Open-pollinated  
DKW44-10 2000s Open-pollinated  
DKW45-25 2010s Open-pollinated  
DKW47-15 2000s Open-pollinated  
DSV05103 2000s Hybrid  
DSV05104 2000s Hybrid  
DSV07100 2000s Hybrid  
Dynastie 2010s Hybrid  
Extra 2010s Hybrid  
Falstaff 2000s Open-pollinated  
Forza 2000s Open-pollinated  
Garou 2010s Hybrid  
Gospel 2000s Hybrid  
Griffin 2010s Open-pollinated  
Hamour 2010s Hybrid  
Hornet 2000s Hybrid  
HPX-6271 2010s Open-pollinated  
HPX-6406 2010s Open-pollinated  
HPX-7228 2010s Open-pollinated  
HyCLASS107W 2000s Open-pollinated  
HyCLASS110W 2000s Open-pollinated  
HyCLASS125W 2010s Open-pollinated  
HyCLASS225W 2010s Open-pollinated  
Kadore 2010s Open-pollinated  
KS2004 2000s Open-pollinated  
KS2064 2000s Open-pollinated  
KS2185 2000s Open-pollinated  
KS2427 2000s Open-pollinated  
KS3018 2000s Open-pollinated  
KS3067 2000s Open-pollinated  
KS3068 2000s Open-pollinated  
KS3074 2000s Open-pollinated 

(continued on next page) 
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(continued ) 

Genotype group Name Decade of release Type  

KS3077 2000s Open-pollinated  
KS3132 2000s Open-pollinated  
KS3254 2000s Open-pollinated  
KS3350 2000s Open-pollinated  
KS4085 2010s Open-pollinated  
KS4428 2010s Open-pollinated  
KS8285 2000s Open-pollinated  
KS8367 2000s Open-pollinated  
KS9124 2000s Open-pollinated  
KS9183 2000s Open-pollinated  
KSR07352S 2010s Open-pollinated  
KSR07363 2010s Open-pollinated  
KSR4653S 2010s Open-pollinated  
KSUR1211 2010s Open-pollinated  
KSUR21 2010s Open-pollinated  
Kuga 2010s Hybrid  
Maestro 2000s Hybrid  
MH 09DJ058 2010s Hybrid  
MH 07J14 2010s Hybrid  
MH 10G11 2010s Hybrid  
MH 10L23 2010s Hybrid  
NK Petrol 2010s Hybrid  
NK Technic 2010s Hybrid  
NPZ0326 2000s Hybrid  
NZ0404 2000s Hybrid  
NPZ0591RR 2000s Hybrid  
NPZ0791RR 2000s Hybrid  
Ovation 2000S Open-pollinated  
Phoenix CL 2010s Hybrid  
Plurax CL 2010s Hybrid  
Popular 2010s Hybrid  
Quartz 2010s Open-pollinated  
Raffiness 2010s Hybrid  
Rally 2000s Hybrid  
Riley 2010s Open-pollinated  
Rumba 2010s Open-pollinated  
Safran 2010s Open-pollinated  
Satori 2000s Hybrid  
Sitro 2000s Hybrid  
SLM0402 2000s Hybrid  
Star 915w 2010s Open-pollinated  
SW 013022 2000s Open-pollinated  
SW 013121 2000s Open-pollinated  
SW 013173 2000s Open-pollinated  
SW 013211 2000s Open-pollinated  
SW 013253 2000s Open-pollinated  
SY Saveo 2010s Hybrid  
Talent 2000s Hybrid  
TCI Exp 983 2010s Open-pollinated  
TCI.06.M1 2000s Open-pollinated  
TCI.06.M3 2000s Open-pollinated  
TCI.06.M4 2000s Open-pollinated  
Visby 2010s Hybrid  
VSX-3 2010s Open-pollinated  
WC.15.7.5 2010s Open-pollinated  
WC.9.7.5.7 2010s Open-pollinated  
X01W692C 2010s Hybrid  
X02W534C 2010s Hybrid  
X10W443C 2010s Hybrid  
X10W665C 2010s Hybrid  
X12W377C 2010s Hybrid  
X12W447C 2010s Hybrid  
X13W029C 2010s Hybrid     

Semi-susceptible 46W94 2000s Hybrid  
AAMU-18-07 2000s Open-pollinated  
Abilene 1990s Open-pollinated  
ARC2180-1 2000s Open-pollinated  
ARC90016-pr377 2000s Open-pollinated  
ARC92004-1 2000s Open-pollinated  
ARC92007-2 2000s Open-pollinated  
ARC97018 2000s Open-pollinated  
Baldur 2000s Hybrid  
Baros 2000s Open-pollinated  
Ceres 1990s Open-pollinated  
Chrome 2010s Open-pollinated 

(continued on next page) 
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(continued ) 

Genotype group Name Decade of release Type  

Claremore 2000s Open-pollinated  
Dimension 2000s Hybrid  
DK Sensei 2010s Hybrid  
DK Severnyi 2010s Hybrid  
DKW13-62 2000s Open-pollinated  
DKW41-10 2000s Open-pollinated  
DKW46-15 2000s Open-pollinated  
Edimax CL 2010s Hybrid  
Einstein 2010s Hybrid  
Flash 2000s Hybrid  
Hekip 2010s Hybrid  
Hidylle 2010s Hybrid  
Hybrigold 2010s Hybrid  
Hybristar 2010s Hybrid  
Hybrisurf 2010s Hybrid  
HyCLASS115W 2000s Open-pollinated  
HyCLASS154W 2000s Open-pollinated  
Inspiration 2010s Hybrid  
Jetton 1990s Open-pollinated  
Kalif 2000s Open-pollinated  
Kiowa 2000s Open-pollinated  
Kronos 1990s Hybrid  
KS3302 2000s Open-pollinated  
KS7436 2000s Open-pollinated  
Mercedes 2010s Hybrid  
MH 12AY04 2010s Hybrid  
MH 12AY27 2010s Hybrid  
MH 12AY36 2010s Hybrid  
MH 06E10 2010s Hybrid  
MH 09E3 2010s Hybrid  
Plainsman 1990s Open-pollinated  
PT211 2010s Hybrid  
Rasmus 2000s Open-pollinated  
Sumner 2000s Open-pollinated  
SY Marten 2010s Hybrid  
Taurus 2000s Hybrid  
Titan 2000s Hybrid  
Trabant 2000s Hybrid  
Viking 2000s Open-pollinated  
Virginia 2000s Open-pollinated  
VSX-2 2000s Open-pollinated  
Wichita 1990s Open-pollinated  
Wotan 2000s Open-pollinated  
X01W522C 2000s Hybrid     

Susceptible Albatros 2010s Hybrid  
ARC98015 2000s Open-pollinated  
DKW13-54 2000s Open-pollinated  
DKW13-86 2000s Open-pollinated  
DSV06201 2000s Hybrid  
DSV06202 2000s Hybrid  
HPX-567 2000s Open-pollinated  
KS7436-055 2000s Open-pollinated  
MH 09H19 2010s Hybrid  
TCI.06.M2 2000s Open-pollinated  
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